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a b s t r a c t

This paper presents a survey of the present theoretical understanding based on advanced analytical and
numerical studies of collective processes and beam–plasma interactions in intense heavy ion beams for
applications to ion-beam-driven high energy density physics and heavy ion fusion. The topics include:
discussion of the conditions for quiescent beam propagation over long distances; and the electrostatic
Harris instability and the transverse electromagnetic Weibel instability in highly anisotropic, intense
one-component ion beams. In the longitudinal drift compression and transverse compression regions,
collective processes associated with the interaction of the intense ion beam with a charge-neutralizing
background plasma are described, including the electrostatic electron–ion two-stream instability, the
multispecies electromagnetic Weibel instability, and collective excitations in the presence of a
solenoidal magnetic field. The effects of a velocity tilt on reducing two-stream instability growth rates
are also discussed. Operating regimes are identified where the possible deleterious effects of collective
processes on beam quality are minimized.

& 2009 Elsevier B.V. All rights reserved.

1. Introduction

This paper presents a survey of the present theoretical
understanding based on advanced analytical and numerical
studies of collective processes and beam–plasma interactions in
intense heavy ion beams for applications to ion-beam-driven high
energy density physics and heavy ion fusion [1–7]. A complete
description of collective processes in intense charged particle
beams is provided by the nonlinear Vlasov–Maxwell equations
[8–10] for the self-consistent evolution of the beam distribution
function, fb(x,p, t), and the average electric and magnetic fields
E(x, t) and B(x, t). The effects of finite geometry and intense self-
fields often make it difficult to obtain detailed predictions of beam
equilibrium, stability and transport properties based on the
Vlasov–Maxwell equations. Nonetheless, often with the aid of
advanced numerical simulations, there has been considerable
theoretical progress in applying the Vlasov–Maxwell equations
to investigate the detailed equilibrium and stability properties
of intense charged particle beams [11–80]. These theoretical
studies include a wide variety of collective interaction processes
ranging from the electrostatic Harris instability [32–42] and

electromagnetic Weibel instability [39,43–48] driven by large
temperature anisotropy with T?bbTJb in a one-component
nonneutral beam, to wall-impedance-driven collective instabil-
ities [49–51], to the resistive hose instability [52–58], to the
dipole-mode two-stream (electron cloud) instability for an
intense ion beam propagating through a partially neutralizing
electron background [59–71], to the collective processes asso-
ciated with the interaction of the intense ion beam with a charge-
neutralizing background plasma [72–77], including the electro-
static electron–ion two-stream instability and the multispecies
electromagnetic Weibel instability [78–82], and collective excita-
tions in the presence of a solenoidal magnetic field [3,80], to the
development and application of a nonlinear stability theorem in
the smooth-focusing approximation [8,23,24].

The present survey of collective processes and beam–plasma
interactions affecting intense ion beam propagation is necessarily
brief. In the acceleration and beam transport regions, the topics
covered in Section 2 include discussion of the sufficient condition
for quiescent (stable) beam propagation over long distances; and
the electrostatic Harris-type instability and the electromagnetic
Weibel-type instability in strongly anisotropic, one-component
nonneutral beams. In Section 3, collective processes associated
with the interaction of an intense ion beam pulse with a large-
volume charge-neutralizing background plasma are described. To
achieve the high focal spot intensities necessary for high energy
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density physics and heavy ion fusion applications, compressing
the beam longitudinally and transversely in the presence of a
dense charge-neutralizing background plasma has many attrac-
tive features [1–7], particularly because the plasma electrons
eliminate (or significantly reduce) the large, defocusing space-
charge force of the ion beam pulse. The collective beam–plasma
interaction processes summarized in Section 3 include: the
electrostatic electron–ion two-stream instability, the multispecies
electromagnetic Weibel instability, dynamic stabilization of the
two-stream instability during longitudinal drift compression, and
the effects of solenoidal magnetic field on collective beam–plasma
instabilities.

In the accelerator and transport regions, the analysis in this
paper assumes a long ion charge bunch (bunch length lbb bunch
radius rb) with directed axial kinetic energy (gb!1)mbc

2 propagat-
ing in the z direction through a perfectly conducting cylindrical
pipe with constant radius rw. The analysis is carried out in the
smooth-focusing approximation where the applied transverse
focusing force is modeled by Ffoc ¼ !gbmbo2

f x?. Here, gb ¼ ð1!
b2
bÞ

!1=2 is the relativistic mass factor, Vb ¼ bbc is the directed axial
velocity of the charged bunch, mb is the ion rest mass, of ¼ const
is the single-particle oscillation frequency associated with the
applied focusing force, and x? ¼ xex+yey is the transverse
displacement of a beam particle from the cylinder axis. Denoting
the characteristic number density of beam particles by n̂b and the
particle charge by eb, it is convenient to introduce the relativistic
plasma frequency ôpb defined by ôpb ¼ ð4pn̂be

2
b=gbmbÞ

1=2 and the
normalized (dimensionless) beam intensity sb defined by sb ¼
ô2

pb=2g2bo2
f [8]. Furthermore, the particle dynamics in the beam

frame is assumed to be nonrelativistic.
It should be noted that one collective instability that is not

summarized in the present paper is the electron–ion two-stream
(electron cloud) instability, which can occur when an intense
ion beam propagates through an (unwanted) partially neutralizing
component of background electrons produced (for example)
when energetic beam ions strike the chamber wall or ionize
background gas atoms. Advanced analytical and numerical
simulation studies of this instability have previously been
reported [64–70,78] and will not be repeated here, except to
note that the conditions for eliminating or greatly reducing the
effects of this instability have been identified, e.g., through
the introduction of a very modest axial momentum spread in
the beam ions.

As noted earlier, Sections 2 and 3 provide a brief overview
of the present understanding of several collective instabilities that
can develop in intense ion beams and beam–plasma systems.
While the summaries are necessarily short, the references in the
bibliography for this paper provide considerably detailed infor-
mation.

2. Anisotropy-driven collective instabilities in one-component
nonneutral beams

2.1. Nonlinear stability theorem

A very important consequence of the nonlinear Vlasov–
Maxwell equations is the existence of a stability theorem
(a sufficient condition for stability) for a one-component
charged particle beams. In particular, for a long, coasting beam
in the smooth-focusing approximation, the stability theorem
states that any equilibrium distribution function f 0bðH

0Þ that
satisfies

@

@H0 f
0
bðH

0Þp0 (1)

is nonlinearly stable to perturbation with arbitrary polarization
[8,23,24]. In Eq. (1),

H0 ¼ p02r þ p0y
2 þ p02z

! ".
2mb þmbo02

f r
02
.
2þ ebf

0ðr0Þ

is the single-particle Hamiltonian in the beam frame (primed
variables), and f0(r0) is determined self-consistently in terms of
the beam space charge from Poisson’s equation. It follows from
Eq. (1) that any isotropic distribution that is a monotonically
decreasing function of energy in the beam frame is nonlinearly
stable. The validity of this theorem has been demonstrated in
nonlinear df simulations [67,83] for beam propagation over
thousands of equivalent lattice periods.

Eq. (1) is a sufficient condition for stability. Therefore, a
necessary condition for instability is that the beam distribution
function has some distinct nonthermal feature such as an inverted
population in phase space [11–13], or a strongly anisotropic
distribution function in the beam frame. In electrically neutral
plasmas, energy anisotropies are well known to provide the free
energy to drive the classical electrostatic Harris instability [32]
and the electromagnetic Weibel instability [43]. The drive
mechanism for instability can be either a temperature anisotropy
or an anisotropy in the relative directed kinetic energy of the
plasma components.

2.2. Electrostatic Harris instability for one-component beams

In accelerators, strongly anisotropic beam distributions TJb/
T?b51 develop naturally during the acceleration of the charge
bunch [10], and can provide the free energy to drive both the
electrostatic Harris instability [32–42] and the electromagnetic
Weibel instability [39,43–48]. In this section, we summarize
theoretical advances in recent analytical and numerical studies
of the Harris instability in intense one-component beams
[33–39,78], assuming electrostatic perturbations (r&dEffi0 and
dBffi0) about an initial anisotropic thermal equilibrium distribu-
tion (TJboT?b) described by the self-consistent Vlasov equilibrium

f 0bðr;pÞ ¼
n̂b

ð2pmbT?bÞ
exp !

H?

T?b

# $
1

ð2pmbTkbÞ
1=2

& exp !
p2z

2mbTkb

# $
(2)

in the beam frame. The ‘primed’ notation for beam-frame
variables has been dropped in Eq. (2). In Eq. (2), H? ¼ p2?=2mb þ
ð1=2Þmbo2

f ðx
2 þ y2Þ þ ebf

0ðrÞ is the single-particle Hamiltonian

for the transverse particle motion, p? ¼ ðp2y þ p2r Þ
1=2 is the

transverse particle momentum, r ¼ (x2+y2)1/2 is the radial
distance from the beam axis, and f0(r) is determined
self-consistently from the equilibrium Poisson equation

r!1ð@=@rÞ½r@f0=@r) ¼ !4peb
R
d3pf 0bðr;~pÞ. In the remainder of Sec-

tion 2, it is convenient to introduce the effective depressed
betatron frequency ob? defined by [37]

o2
b? ¼

2T?b

mbr2b
¼ o2

f ! ō2
pb=2 (3)

where T?b is the transverse beam temperature, rb is the root-
mean-square beam radius, mb is the mass of a beam particle, and

ō2
pb ¼

4pe2b
mbr2b

Z rw

0
drrnbðrÞ (4)

is the average beam–plasma frequency squared. The normalized
tune depression n̄=n0 is defined by

n̄
n0

¼
ob?

of
(5)
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where of ¼ const is the transverse frequency associated with the
applied focusing field in the smooth-focusing approximation.

Detailed 3D numerical studies of the electrostatic Harris
instability in intense one-component beams have been carried
out using the linear eigenmode code bEASt and the nonlinear df
simulation code BEST, and detailed results are presented in
Refs. [33–39,78]. For present purpose we summarize here some
of the most important results.

Shown in Fig. 1 are plots of the normalized growth rate
(Imo)max/of versus the normalized tune depression n̄=n0 obtained
for TJb/T?b ¼ 0 and wall radius rw ¼ 3rb [39]. The dashed curve in
Fig. 1 has been calculated using the eigenmode code bEASt [37,39]
for perturbations with azimuthal mode number m ¼ 1, which has
the largest growth rate. The solid curve in Fig. 1 [39] is obtained
from the simplified approximate dispersion relation [37]

1

1! n̄2=n20
¼

1

ðo=of ! n̄=n0Þ2
þ

1

ðo=of þ n̄=n0Þ2
. (6)

The m ¼ 1 dipole mode is purely growing with Reo ¼ 0. Note
from the dashed curve in Fig. 1 that (Imo)max/offfi0.34 for
n̄=n0 ffi 0:62, and that the Harris instability is completely absent
for n̄=n040:82, corresponding to sufficiently small tune shift that
ðdn̄Þ=n0 ¼ ðn0 ! n̄Þ=n0o0:18.

The nonlinear df code BEST has been used to follow the
detailed nonlinear evolution and saturation of the Harris
instability [33–39]. Shown in Fig. 2 are plots versus n̄=n0 of the
threshold values of the anisotropy TJb/T?b required for complete
stabilization of the Harris instability [39]. The dashed (solid)
curves in Fig. 2 correspond to threshold values of TJb/T?b for
azimuthal mode numbers m ¼ 0,1 obtained from the linear
eigenmode code bEASt. The squares in Fig. 2 correspond to the
effective longitudinal beam temperature Tkb * mbhv2

k i obtained
in nonlinear df simulations after the instability saturates. As
discussed in Ref. [37], the Harris instability in a one-component
beam saturates nonlinearly through a combination of particle
trapping and quasilinear relaxation.

Two important conclusions are evident from Figs. 1 and 2. The
beam parameters in many accelerator systems satisfy n̄=n040:82,
in which case the Harris instability is expected to be completely
absent. On the other hand, for ion-beam-driven high energy
density physics and heavy ion fusion applications, the beam
intensity may be sufficiently high that n̄=n0o0:82. In this case,
it is evident from Figs. 1 and 2 that the nonlinear dynamics of
the Harris instability can play an important role in increa-

sing Tkb * mbhv2
k i, which could have a deleterious effect on

longitudinal focusing of the beam pulse if TJb increases to
sufficiently large values. This would of course require a suffi-
ciently long beam transport region for the instability to grow to a
substantial level.

2.3. Electromagnetic Weibel instability for one-component beams

The eigenmode code bEASt and nonlinear df code BEST have
been extended to incorporate slow-wave transverse electromag-
netic perturbations (so-called Darwin model), thereby allowing
for the possibility of a Weibel-type instability occurring in a one-
component charged particle beam [39,43–45]. Finite geometry
and self-field effects make a precise stability analysis based on the
linearized Vlasov–Maxwell equations difficult analytically. How-
ever, for an anisotropic distribution of beam particles [Eq. (2)],
assuming TJb-0, k2z r

2
bb1, and ō2

pbr
2
b=c

251, a simplified analytical
model gives the simple approximate estimate [39]

ðImoÞmax

of
¼

1ffiffiffi
2

p
ōpb

of

vth
?b

c
(7)

for the maximum growth rate of the Weibel instability. Here,
vth
?b * ð2T?b=mbÞ

1=2 is the transverse thermal speed of the beam
particles. Making use of Eqs. (3) and (5), it is readily shown that
Eq. (7) can be expressed in the equivalent form

ðImoÞmax

of
¼

n̄
n0

1!
n̄2

n20

 !1=2
of rb
c

. (8)

Note from Eq. (8) that (Imo)max assumes a maximum value of
ðImoÞmax ¼ 0:5o2

f rb=c for n̄=n0 ¼ 1
. ffiffiffi

2
p

¼ 0:707 (see Fig. 3).
A typical plot of the normalized maximum growth rate

ðImoÞmax=ðo2
f rb=cÞ versus normalized tune n̄=n0 obtained numeri-

cally using the linear eigenmode code bEASt is illustrated by
the solid curve in Fig. 4 [39] for the choice of system parameters
TJb/T?b ¼ 0, rw ¼ 3rb, and ōpbrb=c51. Quite remarkably, taking
rw ¼ 3rb and comparing Figs. 3 and 4, the value of n̄=n0 at
maximum growth is in very good agreement with the theoretical
estimate in Fig. 3, and the corresponding value of the maximum
growth rate in Fig. 4 is in agreement within a factor of two. The
squares shown in Fig. 4 for 0:82on̄=n0o1 are the results obtained
from simulations carried out using the linearized version of the
Darwin BEST code for TJb/T?b ¼ 10!4 and rw ¼ 3rb [39]. Note that
the BEST results connect smoothly to the bEASt results in Fig. 4.
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Fig. 1. Plots of normalized growth rate (Imo)max/of versus normalized tune n̄=n0
for TJb/T?b ¼ 0 and azimuthal mode number m ¼ 1 (dashed curve) [39]. Results
have been obtained using the eigenmode code bEASt [37,39]. The solid curve
corresponds to the simple theoretical estimate in Ref. [37].
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kb for onset of the

Harris instability normalized to the transverse temperature T?b is plotted versus
the normalized tune depression n̄=n0 for two values of the azimuthal mode
number,m ¼ 0 (solid line) andm ¼ 1 (dashed line) [39]. The squares correspond to
the effective longitudinal beam temperature Tkb * mbhv2

k i obtained from simula-
tions using the nonlinear df code after the instability saturates.
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From Section 2.2 and Fig. 1 it is clear that the Harris instability
can have a substantial growth rate provided n̄=n0o0:82 and
TJb/T?b is less than the threshold value for stabilization shown in
Fig. 2. On the other hand, from Figs. 3 and 4, the electromagnetic
Weibel instability typically has a very small growth rate for
n̄=n0o0:82, because o2

f r
2
w=c

251 and ō2
pbr

2
b=c

251 in the para-
meter regimes of practical interest. In addition, the threshold
value of TJb/T?b for complete stabilization of the Weibel instability
is extremely small, due to finite transverse geometry effects, and
can be estimated to be [37,39]

Tth
kb

T?b
ffi 2& 10!0:7 ō

2
pbr

2
b

c2
51. (9)

As a consequence, the Weibel instability is much less dangerous
for intense beams with normalized tune n̄=n0o0:82. This is
because such intense beams are strongly unstable to the
electrostatic Harris instability, which saturates at a much larger
longitudinal temperature, ðTth

jjb=T?bÞ
Weibel5ðTth

jjb=T?bÞ
Harris + 0:11,

and has a much larger growth rate, gWeibel=gHarris,vth
?b=c51, where

gWeibel denotes (Imo)max for the Weibel instability, and gHarris
denotes (Imo)max for the Harris instability.

In summary, the electromagnetic Weibel instability is likely to
be an important instability mechanism in one-component

charged particle beams with n̄=n040:82, but not in intense beams
with n̄=n0o0:82.

3. Collective interaction processes for intense beam propagation
through background plasma

The topics covered in Section 2 included a discussion of the
sufficient condition for quiescent (stable) beam propagation over
long distances (Section 2.1); and the electrostatic Harris-type
instability (Section 2.2) and the electromagnetic Weibel-type
instability (Section 2.3) in strongly anisotropic, one-component
nonneutral beams. In Section 3, the collective processes asso-
ciated with the interaction of an intense ion beam pulse with a
large-volume, charge-neutralizing background plasma are de-
scribed. To achieve the high focal spot intensities necessary for
high energy density physics and heavy ion fusion applications,
compression of the beam longitudinally and transversely in the
presence of a dense charge-neutralizing background plasma has
many attractive features [1–7], particularly because the plasma
electrons eliminate (or significantly reduce) the large, defocusing
space-charge force of the ion beam pulse. The collective
beam–plasma interaction processes summarized in this section
include: the multispecies electromagnetic Weibel instability
(Section 3.1); the electrostatic electron–ion two-stream instability
(Section 3.2); the dynamic stabilization of the two-stream
instability during longitudinal drift compression (Section 3.3);
and the effects of solenoidal magnetic field on collective
beam–plasma instabilities (Section 3.4).

3.1. Multispecies Weibel instability

The electromagnetic Weibel instability [39,43–48] was shown
in Section 2.3 to be relatively ineffective in one-component
charged particle beams. The situation can be quite different,
however, when an intense beam propagates through background
plasma [78–84]. In this case, the large energy anisotropy
associated with the directed kinetic energy of the beam particles
relative to the background plasma can provide significant free
energy to drive the transverse electromagnetic Weibel instability,
and cause filamentation in the plane perpendicular to beam
propagation. In this section, we summarize the results of a
macroscopic cold-fluid model in which an intense ion beam
(j ¼ b) propagates through a background plasma (j ¼ e, i). The
background plasma is assumed to provide complete charge and
current neutralization with [84]
X

j¼b;e;i

n0
j ðrÞej ¼ 0 and

X

j¼b;e;i

n0
j ðrÞejbjc ¼ 0. (10)

In Eq. (10), Vzj ¼ bjc is the average axial velocity of species j
(j ¼ b, e, i), and gj ¼ ð1! b2

j Þ
!1=2 is the relativistic mass factor.

Moreover, current neutralization has been assumed since this case
gives the largest growth rate for the multispecies Weibel
instability. That is, a finite azimuthal self-magnetic field B0

yðrÞa0
tends to reduce the growth rate of the Weibel instability [9,47].
Furthermore, the present analysis assumes axisymmetric flute
perturbations with q/qy ¼ 0 and q/qz ¼ 0, and electromagnetic
field perturbations with components dE ¼ dErer+dEzez and
dB ¼ dByey. Note that the field perturbations have mixed
polarization with both longitudinal component (dEra0) and
transverse electromagnetic components (dBya0 and dEza0).
Finally, it is assumed that the beam–plasma interactions take
place in a region where there is no applied focusing field (of ¼ 0),
and a perfectly conducting cylindrical wall is located at radius
r ¼ rw. We express dEzðr; tÞ ¼ dÊz expð!iotÞ, where Imo40
corresponds to instability. Making use of a cold-fluid model that
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neglects pressure perturbations, this leads to the eigenvalue
equation [79]

1
r
@
@r

r 1þ
X

j¼b;e;i

b2
j o2

pjðrÞ
o2

þ
X

j¼b;e;i

½bjo2
pjðrÞ)

2

o2 o2 !
P

j¼b;e;io2
pjðrÞ

h i

0

@

1

A

2

4

@
@r
dEz

&
þ

o2

c2
!
X

j¼b;e;i

o2
pjðrÞ

g2j c2

0

@

1

AdEz ¼ 0 (11)

where opjðrÞ ¼ ½4pn0
j ðrÞe

2
j =gjmj)1=2 and gj ¼ ð1! b2

j Þ
!1=2.

Eq. (11) is the desired eigenvalue equation, with the terms

proportional to
P

j¼b;e;ib
2
j o2

pjðrÞ and
P

j¼b;e;ibjo2
pjðrÞa0 providing

the free energy to drive the multispecies Weibel instability.
Eq. (11) can be integrated numerically to determine the eigenva-
lue o2 and eigenfunction dÊzðrÞ for a wide range of beam–plasma
density profiles n0

j ðrÞ. Analytical solutions are also tractable for the
case of flat-top (step-function) density profiles [79]. As a general
remark, when

P
j¼b;e;ib

2
j o2

pjðrÞa0 and
P

j¼b;e;ibjo2
pjðrÞa0, Eq. (11)

supports both stable fast-wave solutions with Imo ¼ 0,
|o/ck?|41, and unstable slow-wave solutions with Imo40,
|o/ck?|o1 [79]. Here, |k?,q/qr| is the characteristic radial
wavenumber of the perturbation. Eq. (11) also supports plasma
oscillation solutions associated with the factor proportional to
½o2 !

P
j¼b;e;io2

pjðrÞ)
!1.

As an example that is analytically tractable, we consider the
case where the density profiles are uniform both inside and
outside the beam (Fig. 5) with n0

j ðrÞ specified by

n0
j ðrÞ ¼ n̂i

j ¼ const; j ¼ b; e; i (12)

for 0prorb, and

n0
j ðrÞ ¼ n̂o

j ¼ const; j ¼ e; i (13)

for rborprw. The transcendental dispersion relation derived from
Eq. (11) for step-function density profiles has been solved
numerically [79,84] for the complex oscillation frequency o for
a wide range of system parameters corresponding to (a) plasma-
filled waveguide (rb ¼ rw); (b) plasma outside the beam–plasma
channel (n̂o

j a0, j ¼ e, i, and rborw); and (c) no plasma outside the
beam–plasma channel (n̂o

j ¼ 0, j ¼ e, i, and rborw). Assuming a
positively charged ion beam (j ¼ b) propagating through
background plasma electrons and ions (j ¼ e, i), the charge states
are denoted by eb ¼ +Zbe, ee ¼ !e, and ei ¼ +Zie, and the plasma
electrons are assumed to carry the neutralizing current (bea0),

whereas the plasma ions are taken to be stationary (bi ¼ 0). The
conditions for charge neutralization and current neutralization in
Eq. (10) then give

n̂i
e ¼ Zbn̂

i
b þ Zin̂

i
i

be ¼
bbZbn̂

i
b

Zbn̂
i
b þ Zin̂

i
i

. (14)

In the analysis of the dispersion relation [79], it is useful to
define

Oi2
p *

P

j¼b;e;i

ôi2
pj; Oo2

p *
P
j¼e;i

ôo2
pj

hb2i *
P

j¼b;e;i
b2
j ô

i2
pjP

j¼b;e;i
ôi2

pj

; hbi *
P

j¼b;e;i
bjô

i2
pjP

j¼b;e;i
ôi2

pj

(15)

where ôi2
pj ¼ 4pn̂i

je
2
j =gjmj, gj ¼ ð1! b2

j Þ
!1=2, and ôo2

pj ¼ 4pn̂i
je

2
j =gjmj.

Note from Eq. (15) that
P

j¼b;e;iô
i2
pj=g2j * Oi2

p ! hb2iOi2
p . Careful

examination of the dispersion relation [79] for short-wavelength
radial perturbations shows that the growth rate Imo of the
unstable Weibel solution scales like GW, where

G2
W * ½hb2i! hbi2)Oi2

p ¼
ðb2

e ô
i2
pe þ b2

bô
i2
pbÞô

i2
pi þ ðbb ! beÞ

2ôi2
peô

i2
pb

P
j¼b;e;iô

i2
pj

(16)

for bi ¼ 0. For ôi2
pb, ô

i2
pi5ôi2

pe, it follows that Eq. (16) is given to good
approximation by

G2
W ¼ b2

e ô
i2
pi þ ðbb ! beÞ

2oi2
pb. (17)

Note from Eq. (17) that GW involves the plasma frequencies of both
the beam ions and the plasma ions.

The transcendental dispersion relation obtained from Eq. (11)
has been solved numerically for the complex eigenfrequency o
and eigenfunction dÊzðrÞ for a wide range of system parameters
[79,84]. Typical numerical results for the unstable slow-wave
(Weibel) branch are illustrated in Figs. 6 and 7 for the choice of
system parameters rw ¼ 3rb, bb ¼ 0.2, be ¼ 0.1, n̂i

i ¼ n̂i
e=2 ¼ n̂i

b ¼
n̂o
e ¼ n̂o

i , and Oi
prb=c ¼ 1=3 (Fig. 6) and Oi

prb=c ¼ 3 (Fig. 7). Here, it
is also assumed that be ¼ 0 ¼ bi in the region outside the
beam–plasma channel, and that the plasma ions are stationary
(bi ¼ 0) inside the channel. Shown in Figs. 6 and 7 are plots of the
normalized growth rate Imo/GW versus radial mode number n,
and plots of the eigenfunction dÊzðrÞ versus r/rw for mode number
n ¼ 5. It is evident from Figs. 6 and 7 that GW [Eq. (17)] gives
a very good estimate of the maximum growth rate of the
multispecies Weibel instability.

To summarize, the multispecies Weibel instability with
characteristic growth rate GW can be particularly virulent for a
sufficiently intense (high density) ion charge bunch propagating
through background plasma that provides complete charge and
current neutralization. On the other hand, the multispecies
Weibel instability is not expected to have a deleterious effect on
the beam quality provided

GWtpo1 (18)

where tp ¼ Lp/Vb is the interaction time of the beam ions with
background plasma, and Lp is the length of the plasma column.
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Equivalently, GWtpo1 gives

Lpoa c

ôi
pb

¼ 2:3& 107a
A1=2
b

½n̂i
bðcm!3Þ)1=2

cm (19)

where use is made of Eq. (17), and the constant a is defined in the
nonrelativistic case by

a ¼ 1!
Zbn̂

i
b

n̂i
e

 !2

þ
Zi

Zb

mb

mi

Zbn̂
i
b

n̂i
e

1!
Zbn̂

i
b

n̂i
e

 !2

4

3

5
!1=2

. (20)

For singly ionized aluminum beam ions (Zb ¼ 1 and Ab ¼ 13) in
background argon plasma (Ai ¼ 18) and n̂i

b=n̂
i
e ¼ 1=2, we obtain

from Eqs. (19) and (20) that Lpo1.27m, 12.7m, for n̂i
b ¼ 1012,

1010 cm!3. Therefore the exponential length for the multispecies
Weibel instability is moderately long, even for beam densities in
the range 1010!1012 cm!3.

3.2. Electrostatic two-stream instability

The relative streaming of the beam ions through the back-
ground plasma components can also provide the free energy to
drive the electrostatic two-stream instability with characteristic
polarization r&dEffi0 and dBffi0. In this section, we make
assumptions similar to those made at the beginning of Section 3.1,
including equilibrium charge and current neutralization [Eq. (10)],
absence of an applied focusing field (of ¼ 0), and a perfectly
conducting cylindrical wall located at radius r ¼ rw. Expressing the
longitudinal electric field perturbations as dE ¼ !rdf, we
assume axisymmetric perturbations with q/qy ¼ 0. Perturbed
quantities are expressed as dfðr; z; tÞ ¼ d f̂ðrÞ exp½iðkzz!otÞ),
where kz is the axial wavenumber, and Imo40 corresponds
to instability (temporal growth). Without presenting algebraic
details [84,85], the linearized cold-fluid equations lead to the

electrostatic eigenvalue equation

1
r
@
@r

r 1!
X

j¼b;e;i

o2
pjðrÞ=g2j

ðo! kzVzjÞ2

0

@

1

A @
@r
df̂

2

4

3

5

! k2z 1!
X

j¼b;e;i

o2
pjðrÞ=g2j

ðo! kzVzjÞ2

0

@

1

Adf̂ ¼ 0. (21)

Here opjðrÞ ¼ ½4pn0
j ðrÞe

2
j =gjmj)1=2 is the relativistic plasma fre-

quency, Vzj ¼ bjc ¼ const is the average axial velocity of component
j (j ¼ b, e, i), and gj ¼ ð1! b2

j Þ
!1=2 is the relativistic mass factor.

The electrostatic eigenvalue equation (22) can be solved
numerically for the eigenfunction d f̂ðrÞ and the complex
eigenfrequency o for a wide range of density profiles n0

j ðrÞ
(j ¼ b, e, i). For present purposes, we specialize again to the choice
of flat-top density profiles in Eqs. (12) and (13). In this case,
the eigenfunction d f̂ðrÞ can be determined analytically in the
beam–plasma channel (0prorb), and in the region outside
the beam (rboprw). Employing the appropriate boundary condi-
tions at r ¼ rb, and enforcing d f̂ðr ¼ rwÞ ¼ 0, some straightfor-
ward algebra leads to the electrostatic dispersion relation [78,84]

Dðkz;oÞ ¼ 1! g0
X

j¼b;e;i

ôi2
pj=g2j

ðo! kzVzjÞ2

! ð1! g0Þ
X

j¼e;i

ôo2
pj =g2j
o2

¼ 0. (22)

Here, the geometric factor g0 is defined by

g0 ¼ kzrbI
0
0ðkzrbÞI0ðkzrbÞ

K0ðkzrbÞ
I0ðkzrbÞ

!
K0ðkzrwÞ
I0ðkzrwÞ

' &
(23)

for rbarw, where I0(x) and K0(x) are the modified Bessel functions of
the first and the second kinds, respectively, of order zero, and I00ðxÞ
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denotes (d/dx)I0(x). In addition, ôi
pj ¼ ð4pn̂i

je
2
j =gjmjÞ

1=2 (j ¼ b, e, i) is
the jth component plasma frequency inside the beam–plasma
channel (0prorb), and ôo

pj ¼ ð4pn̂o
j e

2
j =gjmjÞ

1=2 is the jth component
plasma frequency outside the beam–plasma channel (rborprw). It is
also assumed that the plasma ions are stationary (bi ¼ 0) inside the
channel. The conditions for charge neutralization and current
neutralization in the beam–plasma channel then reduce to
Eq. (14). Finally, note from Eq. (23) that the geometric factor g0
exhibits a strong dependence on axial wavenumber kz, with

g0 ffi
1
2
k2z r

2
b ln

rw
rb

# $
; for k2z r

2
w51

g0 ffi
1
2
; for k2z r

2
wb1. (24)

Because of the geometric factors g0 and 1!g0, the detailed
properties of the two-stream instability calculated from Eq. (22) can
differ substantially from the infinite beam–plasma results. However,
several interesting features are evident. First, in the absence of plasma
outside the beam–plasma channel (ôo2

pj ¼ 0), the channel electrons
undergo unstable two-stream interactions with both the beam ions
and the channel plasma ions. Second, when there is plasma outside
the beam–plasma channel (ôo2

pj a0), the channel electrons can also
undergo a strong unstable two-stream interaction with the plasma
electrons outside the channel. Illustrative solutions to the dispersion
relation (22) are presented in Refs. [78,84]. For present purposes, we
consider the case when there is no plasma outside the beam–plasma
channel, i.e., n̂o

e ¼ 0 ¼ n̂o
i for rborprw, and assume a cesium ion beam

with bb ¼ 0.2 and Zb ¼ 1 propagating through background argon
plasmawith Zi ¼ 1 and bi ¼ 0. The current neutralization condition in
Eq. (14) then gives be ¼ 0.1. The dispersion relation (22) has two
unstable branches corresponding to the interaction of the plasma
electrons with the beam ions, and the interaction of the plasma
electrons with the plasma ions. The unstable branch illustrated in
Fig. 8 corresponds to the interaction of the plasma electrons with the
plasma ions. Fig. 8 shows plots of the normalized growth ðImoÞ=ôi

pe

and real oscillations frequency ðReoÞ=ôi
pe versus kzrb for the case

corresponding to ôi
perb=c ¼ 3 and rb/rw ¼ 1/3. Note that the two-

stream growth rate is strongly peaked as a function of kzrb. For the
choice of system parameters in Fig. 8, the value of kz ¼ kzm at
maximum growth rate satisfies k2zmr

2
bb1. In this case, g0(kzm)ffi1/2 in

Eq. (22), and the maximum growth rate (Imo)max and value of kzm in
Fig. 8 are given to excellent approximation by the analytical
estimates:

ðImoÞmax ffi
3
8

# $1=2 ôi2
pi

2ôi2
pe

0

@

1

A
1=3

ôi
pe

jkzmjrb ffi
1

ð2Þ1=2
ôi

perb
c

1
jbi ! bej

(25)

where bi ¼ 0 is assumed. Eq. (25) corresponds to the unstable plasma
electron–plasma ion two-stream solution to Eq. (22). For the unstable
plasma electron–beam ion solution, the estimates are similar to those
in Eq. (25) with ôi

pi replaced by ôi
pb, and bi!be replaced by bb!be.

To summarize, for a cold ion beam propagating through a cold
background plasma, the electrostatic two-stream instability can
be an important collective interaction mechanism. Since the
phase velocities of the most unstable modes are close to the beam
velocity bbc and the plasma ion velocity bic, modest axial velocity
spreads in the beam ions and plasma ions can lead to a growth
rate reduction. It is also expected that somewhat rounded density
profiles, rather than flat-top profiles, or a radial shear in the axial
velocity profile, would result in lower instability growth rates. An
important nonlinear consequence of the two-stream instability is
the rapid nonlinear heating of the plasma electrons on a time
scale of a few times ðImoÞ!1

max. The time scale ðImoÞ!1
max can be

relatively fast for the electrostatic two-stream instability. The
condition for negligible two-stream interaction over a length Lp of
the plasma column can be expressed as (Imo)maxLp/Vbo1, or
equivalently,

Lpoaes
8
3

# $1=2 c

ôi
pe

bb (26)

where

aes ¼ 1!
Zbn̂

i
b

n̂i
e

 !
Zime

2mi

" #!1=3

(27)

for the electron–ion two-stream growth rate estimate in Eq. (25).
Here, use has been made of Eq. (14) to eliminate n̂i

i=n̂
i
e in favor of

n̂i
b=n̂

i
e. As a numerical example, we consider singly ionized

aluminum beam ions (Zb ¼ 1 and Ab ¼ 13) with bb ¼ 0.1 propa-
gating through background argon plasma (Ai ¼ 18) with n̂i

b=n̂
i
e ¼

1=2 and we obtain from Eqs. (26) and (27) that Lpo31 cm (3.1 cm)
for n̂i

b ¼ 1010 cm!3 (1012 cm!3), which correspond to relatively
short distances.

3.3. Dynamic stabilization of two-stream instability during
longitudinal beam compression

Detailed properties of the electrostatic two-stream instability
can change substantially during longitudinal compression of the
beam pulse from those reported in Section 3.2. In a recent
calculation [81], the electrostatic two-stream instability for a cold,
longitudinally compressing intense ion beam propagating through
a dense background plasma has been investigated both analyti-
cally and numerically using a simple one-dimensional model in
which transverse spatial variations are neglected. The linear
development of the instability and its saturation are examined
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from the point of view of wave dynamics, where the plasma waves
are represented as quasi-particles characterized by their position
z(t), wavenumber k(t), and energy (or frequency) o(t). It is found
that the longitudinal beam compression strongly modifies the
space–time development of the instability. In particular, the
dynamic compression of the beam pulse leads to a significant
reduction in the growth rate of the two-stream instability
compared to the case without an initial velocity tilt [81].

To briefly describe the theoretical model [81], a semi-infinite
ion beam with (see Fig. 9) sharp leading edge enters the region
containing background plasma at time t ¼ 0 and z ¼ 0 with
velocity V0

b and density n0
b. The beam is uniformly compressing in

the longitudinal direction as it propagates inside the plasma and
reaches the maximum compression at time t ¼ Tf at the point
z ¼ Zf ¼ Tf V

0
b , away from the beam entry point at z ¼ 0 of the

chamber
. The unperturbed beam propagation is illustrated in Fig. 9,

where the beam phase space is plotted at different times during
the compression. The transition from the solid to dashed lines in
Fig. 9 identifies the end of the real beam pulse with finite initial
length L0b . The longitudinal ‘‘velocity tilt’’ DV0

b=V
0
b is related to the

compression distance Zf and the initial beam pulse length L0b by

DV0
b=V

0
b ¼ L0b=Zf . (28)

It is also assumed that the ion beam propagation in the
background plasma is both charge neutralized and current
neutralized, where the quasi-neutrality conditions are given by
[81]

ne ¼ Zbnb þ n̂i

neVe ¼ ZbVbnb. (29)

In Eq. (29) nj and Vj denote the dynamically changing unperturbed
density and flow velocity of the beam ions (j ¼ b) and background
plasma electrons (j ¼ e), and n̂i ¼ const (independent of z and t) is
the uniform density of the background plasma ions (assumed
singly ionized and immobile). In Eq. (29), Zb is the charge state of
the beam ions.

The analysis in [81] makes use of an elegant quasi-particle
formalism, and assumes two small parameters

! * 1=ðopeTf Þ51 and d * Zbn
0
b=n̂i51. (30)

It is found that the two-stream instability between the beam
and plasma electrons develops and saturates everywhere in
the background plasma region except at locations close to the
compression point z ¼ Zf during the time interval when
1! t=Tf,1bZbn

0
b=n̂i. It is convenient to introduce the gain

function G(z, t) defined by

Gðz; tÞ ¼
Z t

z=Vb

Imoðz; t̄Þdt̄. (31)

Typical numerical results obtained from the linear dispersion
relation and the quasi-particle dynamical equations are illustrated
in Figs. 10 and 11 [81]. Fig. 10 shows the normalized instability
gain function G(z, t)/a plotted as a function of distance z/Zf at
different times t/Tf ¼ 0.15 (1), 0.25 (2), 0.35 (3), 0.45 (4), 0.55 (5),
0.65 (6), and 0.75 (7) obtained numerically using the quasi-
particle formalism, and compared with the analytical estimate
(dashed curve) [81]. Fig. 11 shows a comparison of the gain
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function in Eq. (31) with the gain function for a beamwith zero tilt
velocity, i.e., with the expression

Gnotilt
z
Zf

; t ¼ Tf

# $
¼ a3

ffiffiffi
3

p

4

ðz=Zf Þ
2=3ð1! z=Zf Þ

1=3

d1=6
. (32)

In Fig. 11, we have chosen system parameters to be d * Zbn
0
b=n̂ ¼

10!3 and a2 ¼ (opbTf)
2 ¼ 1000. For d1/651, it is evident from

Fig. 11 that the velocity tilt significantly reduces the growth rate
compared to the case of a beam with zero velocity tilt [81].

3.4. Effects of solenoidal magnetic field

As noted earlier, to achieve maximum compression, the space
charge of the ion beam is neutralized by the propagation of the
ion beam pulse through a dense background plasma [1–7,72–77].
In one approach, transverse compression is facilitated by using
solenoidal focusing magnets. Recent studies of the beam’s charge
and current neutralization in plasma with solenoidal magnetic
field have shown that when the magnetic field is strong enough
that oce,bbope, the electron dynamics becomes significantly
affected by the magnetic field. Specifically, if the condition
oce,bbope is satisfied, the magnetic field causes the plasma
electrons to start rotating about the solenoid axis as they flow into
the ion beam pulse to neutralize its charge and current [3].
Moreover, if oce4bbope, low-frequency helicon waves propagat-
ing nearly perpendicular to the beam propagation direction can
now be resonantly excited by the beam [3], drastically changing
the way current is being neutralized by the background plasma.
Coupling to the helicon waves also modifies the electromagnetic
Weibel instability discussed in Section 3.1 in the absence of
applied focusing field. In a recent calculation [80], we have
studied the low-frequency electromagnetic and electrostatic
streaming instabilities of an intense ion beam propagating
through background plasma along a solenoidal magnetic field.
Because of the large ion mass, instabilities involving the ion
cyclotron motion are very slow. Therefore, in the present analysis
the effect of the solenoidal magnetic field on the beam ions and
plasma ions is neglected, but its effect on the plasma electrons is
included in the analysis.

For present purposes, we treat the beam–plasma medium as
infinite in spatial extent. The externally applied magnetic field
B0ez is directed along the z direction, and the wavenumber
k ¼ k?ex+kzez of the field perturbation is taken to be in the (x, z)
plane. Similar to previous sections, it is assumed that the
background plasma electrons provide full charge and current
neutralization, which requires the density of electrons to
be n̂e ¼ Zin̂i þ Zbn̂b, and the electron drift velocity to be
Ve ¼ ZbVbn̂b=n̂e, where n̂j and Ẑj are the number density and
charge state of the background plasma ions (j ¼ i) and the beam
ions (j ¼ b). For simplicity, the analysis [80] is carried out in a
reference frame moving axially with the electrons. In this frame
V̄b ¼ Vb ! Ve, V̄e ¼ 0 and V̄ i ¼ !Ve. Neglecting the cyclotron
motion of the beam ions and plasma ions, the full cold-plasma
dispersion relations for an ion beam propagating with velocity Vb

along the magnetic field ~B0 is derived and analyzed in detail in
Ref. [80].

For present purposes, we consider the case of nearly transverse
propagation and low-frequency perturbations satisfying

cos2 y ¼ k2z =k
251; joj5ope;oce (33)

where k2 ¼ k2? þ k2z , ope ¼ ð4pn̂ee2=meÞ1=2, and oce ¼ eB0/mec. In
addition, we consider perturbations with sufficiently short
wavelength that c2k2=o2

peb1. Making use of these approxima-
tions, the full dispersion relation derived in Ref. [80] can be

approximated by

1þ
o2

pe

o2
ce

1þ
b̄2
i o2

pi

ðo! kzV̄ iÞ
2
þ

b̄2
bo2

pb

ðo! kzV̄bÞ
2

2

4

3

5!
o2

pe cos
2 y

o2

!
o2

pb

ðo! kzV̄bÞ
2
!

o2
pi

ðo! kzV̄ iÞ2
¼

o2
pio2

pbðb̄b ! b̄iÞ
2

ðo! kzV̄bÞ
2ðo! kzV̄ iÞ2

(34)

where b̄j ¼ V̄ j=c (j ¼ i, b). The terms proportional to b̄2
j in Eq. (34)

describe transverse electromagnetic contributions that drive the
multispecies Weibel instability, whereas the remaining terms in
Eq. (34) represent electrostatic two-stream contributions.

It is evident that even the simplified dispersion relation in
Eq. (34) has a rich physics content that depends sensitively on the
dimensionless parameter b2

bo2
pe=o2

ce. For example, for kz ¼ 0, in
the limit of a weak solenoidal magnetic field with b2

bo2
pe=o2

ceb1, it
follows that Eq. (34) can be approximated by

1 ¼ !
1
o2

ðb̄2
i o2

pi þ b̄2
bo2

pbÞ. (35)

Note that Eq. (35) corresponds to the familiar multispecies Weibel
instability (Section 3.1) in the absence of applied focusing field. On
the other hand, in the limit of a strong magnetic field with

b̄2
bo2

pe=o2
ce51, it follows that Eq. (34) can be approximated by

1þ
o2

pe

o2
ce

!
o2

pe cos
2 y

o2
!

o2
pb

ðo! kzV̄bÞ
2
!

o2
pi

ðo! kzV̄ iÞ
2

¼
o2

pio2
pbðb̄b ! b̄iÞ

2

ðo! kzV̄bÞ
2ðo! kzV̄ iÞ

2
. (36)

Depending on the value of cos y ¼ kz/k, the dispersion relation
(36) supports solutions ranging from the electrostatic modified
two-stream instability between the plasma electrons and the
beam ions or the plasma ions, to a streaming instability due to
interaction of the ion beam with lower hybrid oscillations [80].

The growth rate of these instabilities have been obtained
numerically by solving the full dispersion relation in Ref. [80], as
well as the approximate dispersion relations in Eqs. (34) and (36).
Typical results are illustrated in Figs. 12 and 13. Fig. 12 shows
the normalized two-stream growth rate Imo/ope plotted as a
function of the normalized wavenumber ckz/ope for ck?/ope ¼ 20
and ope/oce ¼ 2. The dotted curve is the numerical solution of the
full electromagnetic dispersion relation [80], and the solid curve is
the solution of the (approximate) electrostatic dispersion relation
in Eq. (36). Fig. 13 shows the normalized growth rate of the
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multispecies Weibel instability, Imo
. ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

o2
pb þo2

pi

q
, plotted as a

function of b̄bope=oce. Note that the growth rate is relatively
insensitive to the value of wavenumber k at these very short
wavelengths. Fig. 13 has been obtained by solving full
electromagnetic dispersion relation [80] (dotted line), and by
using the approximate dispersion relation in Eq. (36) (solid line)
for the choice of system parameters kz ¼ 0, ck?/ope ¼ 20,
b̄b ¼ V̄b=c ¼ 0:1, opb/ope ¼ 0.01, opi/opb ¼ 1, and n̂b=n̂i ¼ 0:2.

In summary, streaming instabilities of intense charged particle
beams propagating along a solenidal magnetic field in a back-
ground plasma have been studied analytically and numerically
[80]. It is found that the growth rates of the multispecies Weibel
instability and electrostatic two-stream instabilities are strongly
affected by the strength of the solenoidal field as measured by the
dimensionless parameter bbope/oce.

4. Conclusions

This paper presented a survey of collective processes and
beam–plasma interactions affecting heavy ion beam propagation
for ion-beam-driven high energy density physics and heavy ion
fusion applications. The topics covered in Section 2 included a
discussion of the sufficient condition for quiescent (stable) beam
propagation over long distances (Section 2.1); and the electro-
static Harris-type instability (Section 2.2) and the electromagnetic
Weibel-type instability (Section 2.3) in strongly anisotropic, one-
component nonneutral beams. In Section 3, collective processes
associated with the interaction of an intense ion beam pulse with
a large-volume, charge-neutralizing background plasma were
described. To achieve the high focal spot intensities necessary
for high energy density physics and heavy ion fusion applications,
compressing the beam longitudinally and transversely in the
presence of a dense charge-neutralizing background plasma has
many attractive features, particularly because the plasma elec-
trons eliminate (or significantly reduce) the large, defocusing
space-charge force of the ion beam pulse. The collective
beam–plasma interaction processes summarized in Section 3
included: the multispecies electromagnetic Weibel instability
(Section 3.1); the electrostatic electron–ion two-stream instability
(Section 3.2); dynamic stabilization of the two-stream instability
during longitudinal drift compression (Section 3.3); and the
effects of solenoidal magnetic field on collective beam–plasma
instabilities (Section 3.4). Operating regimes to minimize the
deleterious effects of collective instabilities have been identified.
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